Lemma on the Binomial Coefficients of Combinatorial Geometric Series

نویسندگان

چکیده

This paper presents lemmas and its corollaries on the combinatorial geometric series summation of binomial coefficients. Also, coefficient for each term in refers to a coefficient. These ideas can enable scientific researchers solve real life problems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Certain Series Involving Reciprocals of Binomial Coefficients

We evaluate the following family of series involving reciprocals of binomial coefficients in terms of elementary functions for m = 3,4. ∞ ∑ k=0 xk (mk+1) (mk k ) .

متن کامل

The Series of Reciprocals of Non-central Binomial Coefficients

Utilizing Gamma-Beta function, we can build one series involving reciprocal of non-central binomial coefficients, then We can structure several new series of reciprocals of non-central binomial coefficients by item splitting, these new created denominator of series contain 1 to 4 odd factors of binomial coefficients. As the result of splitting items, some identities of series of numbers values ...

متن کامل

On the Conditioned Binomial Coefficients

We answer a question on the conditioned binomial coefficients raised in and article of Barlotti and Pannone, thus giving an alternative proof of an extension of Frobenius’ generalization of Sylow’s theorem.

متن کامل

On Sums of Binomial Coefficients

In this paper we study recurrences concerning the combinatorial sum [n r ] m = ∑ k≡r (mod m) (n k ) and the alternate sum ∑ k≡r (mod m)(−1) (n k ) , where m > 0, n > 0 and r are integers. For example, we show that if n > m−1 then b(m−1)/2c ∑ i=0 (−1) (m− 1− i i )[n− 2i r − i ]

متن کامل

Note on the Convolution of Binomial Coefficients

We prove that, for every integer a, real numbers k and ℓ, and nonnegative integers n, i and j, i+j=n a i + k − ℓ i a j + ℓ j = i+j=n a i + k i a j j , by presenting explicit expressions for its value. We use the identity to generalize a recent result of Chang and Xu, and end the paper by presenting, in explicit form, the ordinary generating function of the sequence 2n+k n ∞ n=0 , where k ∈ R.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Journal of Engineering and Exact Sciences

سال: 2022

ISSN: ['2527-1075']

DOI: https://doi.org/10.18540/jcecvl8iss9pp14760-01i